Signal Processing with Kernels Wirtinger's Calculus Complex Gaussian Kernel LMS Conclusions

The Complex Gaussian Kernel LMS algorithm A unified framework for complex signal processing in RKHS

P. Bouboulis¹ S. Theodoridis¹

¹Department of Informatics and Telecommunications University of Athens Greece

16-09-2010

Outline

- Signal Processing with Kernels
 - Preliminaries
 - Kernel LMS
- Wirtinger's Calculus
 - The Complex Case: Wirtinger's Calculus
 - Wirtinger's Calculus in complex RKHS
- Complex Gaussian Kernel LMS
 - Formulation
 - Sparsification
 - Experiments

Outline

- Signal Processing with Kernels
 - Preliminaries
 - Kernel LMS
- Wirtinger's Calculus
 - The Complex Case: Wirtinger's Calculus
 - Wirtinger's Calculus in complex RKHS
- Complex Gaussian Kernel LMS
 - Formulation
 - Sparsification
 - Experiments

3/39

Processing in Reproducing Kernel Hilbert Spaces is gaining in popularity within the Machine Learning and Signal Processing Communities:

Processing in Reproducing Kernel Hilbert Spaces is gaining in popularity within the Machine Learning and Signal Processing Communities:

Basic Steps:

Processing in Reproducing Kernel Hilbert Spaces is gaining in popularity within the Machine Learning and Signal Processing Communities:

Basic Steps:

Map the finite dimensionality input data from the input space F into a higher dimensionality RKHS \mathcal{H} .

Processing in Reproducing Kernel Hilbert Spaces is gaining in popularity within the Machine Learning and Signal Processing Communities:

Basic Steps:

- Map the finite dimensionality input data from the input space F into a higher dimensionality RKHS \mathcal{H} .

Processing in Reproducing Kernel Hilbert Spaces is gaining in popularity within the Machine Learning and Signal Processing Communities:

Basic Steps:

- Map the finite dimensionality input data from the input space F into a higher dimensionality RKHS \mathcal{H} .
- Perform a linear processing (e.g., adaptive filtering) on the mapped data in \mathcal{H} .

This procedure is equivalent with a non linear processing in *F*.

Reproducing Kernel Hilbert Spaces.

Consider a linear class \mathcal{H} of real valued functions f defined on a set X (in particular \mathcal{H} is a Hilbert space), for which there exists a function $\kappa: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ with the following two properties:

Reproducing Kernel Hilbert Spaces.

Consider a linear class \mathcal{H} of real valued functions f defined on a set X (in particular \mathcal{H} is a Hilbert space), for which there exists a function $\kappa: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ with the following two properties:

• For every $x \in \mathcal{X}$, $\kappa(x, \cdot)$ belongs to \mathcal{H} .

Reproducing Kernel Hilbert Spaces.

Consider a linear class \mathcal{H} of real valued functions f defined on a set X (in particular \mathcal{H} is a Hilbert space), for which there exists a function $\kappa: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ with the following two properties:

- **①** For every $x \in \mathcal{X}$, $\kappa(x, \cdot)$ belongs to \mathcal{H} .

$$f(\mathbf{x}) = \langle f, \kappa(\mathbf{x}, \cdot) \rangle_{\mathcal{H}}, \text{ for all } f \in \mathcal{H}, \mathbf{x} \in \mathcal{X}.$$
 (1)

Kernel Trick

In particular, If

Kernel Trick

In particular, If

$$\mathcal{X} \ni \mathbf{X} \to \Phi(\mathbf{X}) := \kappa(\mathbf{X}, \cdot) \in \mathcal{H}$$

$$\mathcal{X} \ni \mathbf{y} \to \Phi(\mathbf{y}) := \kappa(\mathbf{y}, \cdot) \in \mathcal{H},$$

then the inner product in \mathcal{H} is given as a function computed on \mathcal{X} :

$$\kappa(\mathbf{x}, \mathbf{y}) = \langle \kappa(\mathbf{x}, \cdot), \kappa(\mathbf{y}, \cdot) \rangle_{\mathcal{H}}$$

kernel trick

Advantages

Advantages of kernel-based signal processing:

Advantages

Advantages of kernel-based signal processing:

• The original nonlinear task is transformed into a linear one.

Advantages

Advantages of kernel-based signal processing:

- The original nonlinear task is transformed into a linear one.
- Different types of nonlinearities can be treated in a unified way.

The black box approach.

- The black box approach.
 - $\bullet \ \, \text{Develop the Algorithm in } \mathcal{X}.$

- The black box approach.
 - Develop the Algorithm in X.
 - Express it, **if possible**, in inner products.

- The black box approach.
 - Develop the Algorithm in X.
 - Express it, if possible, in inner products.
 - Replace inner products with kernel evaluations according to the kernel trick.

- The black box approach.
 - Develop the Algorithm in \mathcal{X} .
 - Express it, if possible, in inner products.
 - Replace inner products with kernel evaluations according to the kernel trick.
- Work directly in the RKHS, assuming that the data have been mapped and live in the RKHS H, i.e.,

$$\mathcal{X} \ni \mathbf{x} \to \Phi(\mathbf{x}) := \kappa(\mathbf{x}, \cdot) \in \mathcal{H}.$$

The problem

The major task of this research:

The problem

The major task of this research:

Development of a unified framework for complex valued signal processing in RKHS.

Outline

- Signal Processing with Kernels
 - Preliminaries
 - Kernel LMS
- Wirtinger's Calculus
 - The Complex Case: Wirtinger's Calculus
 - Wirtinger's Calculus in complex RKHS
- Complex Gaussian Kernel LMS
 - Formulation
 - Sparsification
 - Experiments

Consider the sequence of examples $(\mathbf{x}(1), d(1)), (\mathbf{x}(2), d(2)), \dots, (\mathbf{x}(N), d(N))$:

Consider the sequence of examples $(\mathbf{x}(1), d(1)), (\mathbf{x}(2), d(2)), \dots, (\mathbf{x}(N), d(N))$:

• In a typical LMS filter the goal is to learn a linear input output mapping $f: X \to \mathbb{R}: f(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$, so that to minimize the square error $E[|d(n) - \mathbf{w}^T \mathbf{x}(n)|^2]$.

Consider the sequence of examples $(\mathbf{x}(1), d(1)), (\mathbf{x}(2), d(2)), \dots, (\mathbf{x}(N), d(N))$:

- In a typical LMS filter the goal is to learn a linear input output mapping $f: X \to \mathbb{R}: f(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$, so that to minimize the square error $E[|d(n) \mathbf{w}^T \mathbf{x}(n)|^2]$.
- Using the derivative of the cost, the gradient descent update rule becomes: $w(n) = w(n-1) + \mu e(n)x(n)$.

Consider the sequence of examples

$$(x(1), d(1)), (x(2), d(2)), \dots, (x(N), d(N))$$
:

- In a typical LMS filter the goal is to learn a linear input output mapping $f: X \to \mathbb{R}: f(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$, so that to minimize the square error $E[|d(n) \mathbf{w}^T \mathbf{x}(n)|^2]$.
- Using the derivative of the cost, the gradient descent update rule becomes: $w(n) = w(n-1) + \mu e(n)x(n)$.
- The desired output becomes $\hat{d}(n) = \mathbf{w}(n-1)^T \mathbf{x}(n) = \mu \sum_{k=1}^{n-1} e(k) \mathbf{x}(k)^T \mathbf{x}(n)$.

• In Kernel LMS, firstly we transform the input space to a RKHS $\mathcal H$ to obtain the sequence:

$$(\Phi(\mathbf{x}(1)), d(1)), (\Phi(\mathbf{x}(2)), d(2)), \dots, (\Phi(\mathbf{x}(N)), d(N)).$$

- In Kernel LMS, firstly we transform the input space to a RKHS \mathcal{H} to obtain the sequence: $(\Phi(\mathbf{x}(1)), d(1)), (\Phi(\mathbf{x}(2)), d(2)), \dots, (\Phi(\mathbf{x}(N)), d(N)).$
- We apply the LMS procedure to the sequence of examples minimizing the cost function $E[|d(n) \langle \Phi(\mathbf{x}(n)), \mathbf{w} \rangle_{\mathcal{H}}|^2]$, where now $\mathbf{w} \in \mathcal{H}$.

- In Kernel LMS, firstly we transform the input space to a RKHS \mathcal{H} to obtain the sequence: $(\Phi(\mathbf{x}(1)), d(1)), (\Phi(\mathbf{x}(2)), d(2)), \dots, (\Phi(\mathbf{x}(N)), d(N)).$
- We apply the LMS procedure to the sequence of examples minimizing the cost function $E[|d(n) \langle \Phi(\mathbf{x}(n)), \mathbf{w} \rangle_{\mathcal{H}}|^2]$, where now $\mathbf{w} \in \mathcal{H}$.
- Using the derivative in the RKHS the update rule for the KLMS becomes: $\mathbf{w}(n) = \mathbf{w}(n-1) + \mu \mathbf{e}(n)\Phi(\mathbf{x}(n))$.

- In Kernel LMS, firstly we transform the input space to a RKHS H to obtain the sequence: (Φ(x(1)), d(1)), (Φ(x(2)), d(2)),..., (Φ(x(N)), d(N)).
- We apply the LMS procedure to the sequence of examples minimizing the cost function $E[|d(n) \langle \Phi(\mathbf{x}(n)), \mathbf{w} \rangle_{\mathcal{H}}|^2]$, where now $\mathbf{w} \in \mathcal{H}$.
- Using the derivative in the RKHS the update rule for the KLMS becomes: $\mathbf{w}(n) = \mathbf{w}(n-1) + \mu \mathbf{e}(n)\Phi(\mathbf{x}(n))$.
- The filter output of the KLMS is: $\hat{d}(n) = \langle \mathbf{x}(n), \mathbf{w}(n-1) \rangle_{\mathcal{H}} = \mu \sum_{k=1}^{n-1} e(k) \frac{\kappa(\mathbf{x}(k), \mathbf{x}(n))}{\kappa(\mathbf{x}(k), \mathbf{x}(n))}$.

Remark

Since he RKHS \mathcal{H} can be an infinite dimensional space, the derivative has to be considered in the Fréchet generalized notion:

Remark

Since he RKHS \mathcal{H} can be an infinite dimensional space, the derivative has to be considered in the Fréchet generalized notion:

An operator $T: \mathcal{H} \to F$ is said to be Fréchet differentiable at f_0 , if there exists $u \in \mathcal{H}$ such that the limit

$$\lim_{\|h\|_{\mathcal{H}}} \frac{T(f_0+h)-T(f_0)-\langle u,h\rangle_{\mathcal{H}}}{\|h\|_{\mathcal{H}}}=0.$$

Outline

- Signal Processing with Kernels
 - Preliminaries
 - Kernel LMS
- Wirtinger's Calculus
 - The Complex Case: Wirtinger's Calculus
 - Wirtinger's Calculus in complex RKHS
- Complex Gaussian Kernel LMS
 - Formulation
 - Sparsification
 - Experiments

Complex and real derivatives

Consider a complex function

$$f: \mathbb{C} \to \mathbb{C}: f(z) = f(x + iy) = f_r(z) + if_i(z).$$

Complex and real derivatives

Consider a complex function

$$f: \mathbb{C} \to \mathbb{C}: f(z) = f(x + iy) = f_r(z) + if_i(z).$$

We will say that f is differentiable in the complex sense at c (or that it has complex derivative at c), iff the limit

$$\lim_{z\to c}\frac{f(z)-f(c)}{z-c}$$

exists.

Complex differentiability is a very strict notion.

- Complex differentiability is a very strict notion.
- In complex signal processing we often encounter functions (e.g., the cost functions, which are defined in R) that ARE NOT complex differentiable.

- Complex differentiability is a very strict notion.
- In complex signal processing we often encounter functions (e.g., the cost functions, which are defined in R) that ARE NOT complex differentiable.
- Example: $f(z) = |z|^2 = zz^*$.

- Complex differentiability is a very strict notion.
- In complex signal processing we often encounter functions (e.g., the cost functions, which are defined in R) that ARE NOT complex differentiable.
- Example: $f(z) = |z|^2 = zz^*$.
- In these cases one has to express the cost function in terms of its real part f_r and its imaginary part f_i , and use real derivation with respect to f_r , f_i .

 This approach leads usually to cumbersome and tedious calculations.

- This approach leads usually to cumbersome and tedious calculations.
- Wirtinger's Calculus provides an alternative equivalent formulation.

- This approach leads usually to cumbersome and tedious calculations.
- Wirtinger's Calculus provides an alternative equivalent formulation.
- It is based on simple rules and principles.

- This approach leads usually to cumbersome and tedious calculations.
- Wirtinger's Calculus provides an alternative equivalent formulation.
- It is based on simple rules and principles.
- These rules bear a great resemblance to the rules of the standard complex derivative.

Wirtinger's Calculus considers two forms of derivatives:

Wirtinger's Calculus considers two forms of derivatives:

• The \mathbb{R} -derivative:

$$\frac{\partial f}{\partial z} = \frac{1}{2} \left(\frac{\partial f_r}{\partial x} + \frac{\partial f_i}{\partial y} \right) + \frac{i}{2} \left(\frac{\partial f_i}{\partial x} - \frac{\partial f_r}{\partial y} \right),$$

Wirtinger's Calculus considers two forms of derivatives:

• The \mathbb{R} -derivative:

$$\frac{\partial f}{\partial z} = \frac{1}{2} \left(\frac{\partial f_r}{\partial x} + \frac{\partial f_i}{\partial y} \right) + \frac{i}{2} \left(\frac{\partial f_i}{\partial x} - \frac{\partial f_r}{\partial y} \right),$$

• The conjugate \mathbb{R} -derivative:

$$\frac{\partial f}{\partial z^*} = \frac{1}{2} \left(\frac{\partial f_r}{\partial x} - \frac{\partial f_i}{\partial y} \right) + \frac{i}{2} \left(\frac{\partial f_i}{\partial x} + \frac{\partial f_r}{\partial y} \right).$$

Simple Rules

• Wirtinger's rules are based on the fact that any complex functions, which it is differentiable in the real sense, can be written in the form $f(z, z^*)$.

Simple Rules

- Wirtinger's rules are based on the fact that any complex functions, which it is differentiable in the real sense, can be written in the form $f(z, z^*)$.
- It can be proved that $\frac{\partial f}{\partial z}$ can be easily evaluated as the standard complex derivative taken with respect to z (thus treating z^* as a constant).

Simple Rules

- Wirtinger's rules are based on the fact that any complex functions, which it is differentiable in the real sense, can be written in the form $f(z, z^*)$.
- It can be proved that $\frac{\partial f}{\partial z}$ can be easily evaluated as the standard complex derivative taken with respect to z (thus treating z^* as a constant).
- Similarly $\frac{\partial f}{\partial z^*}$ can be easily evaluated as the standard complex derivative taken with respect to z^* (thus treating z as a constant).

Outline

- Signal Processing with Kernels
 - Preliminaries
 - Kernel LMS
- Wirtinger's Calculus
 - The Complex Case: Wirtinger's Calculus
 - Wirtinger's Calculus in complex RKHS
- Complex Gaussian Kernel LMS
 - Formulation
 - Sparsification
 - Experiments

Extension of Wirtinger's Calculus

• Wirtinger's Calculus can be easily extended to any finite dimensional complex space (i.e., \mathbb{C}^{ν}).

Extension of Wirtinger's Calculus

- Wirtinger's Calculus can be easily extended to any finite dimensional complex space (i.e., C^ν).
- The main rules and principles are similar.

Extension of Wirtinger's Calculus

- Wirtinger's Calculus can be easily extended to any finite dimensional complex space (i.e., C^ν).
- The main rules and principles are similar.
- In order to extend it to a complex RKHS (where the dimensionality can be infinite), we need to employ the notion of Fréchet differentiability.

• Consider a complex RKHS \mathbb{H} and a complex operator $T = T_r + iT_i$, where T_r, T_i are defined on \mathbb{H} .

- Consider a complex RKHS \mathbb{H} and a complex operator $T = T_r + iT_i$, where T_r, T_i are defined on \mathbb{H} .
- Let $\nabla_r T_r$, $\nabla_r T_i$, $\nabla_i T_r$, $\nabla_i T_i$ be the respective Fréchet derivatives (gradients).

- Consider a complex RKHS \mathbb{H} and a complex operator $T = T_r + iT_i$, where T_r , T_i are defined on \mathbb{H} .
- Let $\nabla_r T_r$, $\nabla_r T_i$, $\nabla_i T_r$, $\nabla_i T_i$ be the respective Fréchet derivatives (gradients).
- We can define the respective ℝ-derivative and conjugate ℝ-derivative of *T* as follows:

- Consider a complex RKHS \mathbb{H} and a complex operator $T = T_r + iT_i$, where T_r , T_i are defined on \mathbb{H} .
- Let $\nabla_r T_r$, $\nabla_r T_i$, $\nabla_i T_r$, $\nabla_i T_i$ be the respective Fréchet derivatives (gradients).
- We can define the respective ℝ-derivative and conjugate ℝ-derivative of *T* as follows:
- R-derivative:

$$\nabla_{\mathbf{f}}\mathbf{T} = \frac{1}{2} \left(\nabla_{r} T_{r} + \nabla_{i} T_{i} \right) + \frac{i}{2} \left(\nabla_{r} T_{i} - \nabla_{i} T_{r} \right).$$

- Consider a complex RKHS \mathbb{H} and a complex operator $T = T_r + iT_i$, where T_r , T_i are defined on \mathbb{H} .
- Let $\nabla_r T_r$, $\nabla_r T_i$, $\nabla_i T_r$, $\nabla_i T_i$ be the respective Fréchet derivatives (gradients).
- We can define the respective ℝ-derivative and conjugate ℝ-derivative of *T* as follows:
- R-derivative:

$$\nabla_{\mathbf{f}}\mathbf{T} = \frac{1}{2} \left(\nabla_{r}T_{r} + \nabla_{i}T_{i} \right) + \frac{i}{2} \left(\nabla_{r}T_{i} - \nabla_{i}T_{r} \right).$$

● conjugate R-derivative:

$$\nabla_{\mathbf{f}^*} \mathbf{T} = \frac{1}{2} \left(\nabla_r T_r - \nabla_i T_i \right) + \frac{i}{2} \left(\nabla_r T_i + \nabla_i T_r \right).$$

22/39

Several rules and properties of the ordinary Wirtinger's Calculus can be easily extended:

• If T is f-holomorphic (i.e., it has a Taylor series expansion with respect to f), then $\nabla_{f^*}T = \mathbf{0}$.

- If T is f-holomorphic (i.e., it has a Taylor series expansion with respect to f), then $\nabla_{f^*}T = \mathbf{0}$.
- If T is f^* -holomorphic (i.e., it has a Taylor series expansion with respect to f^*), then $\nabla_f T = \mathbf{0}$.

- If T is f-holomorphic (i.e., it has a Taylor series expansion with respect to f), then $\nabla_{f^*}T = \mathbf{0}$.
- If T is f^* -holomorphic (i.e., it has a Taylor series expansion with respect to f^*), then $\nabla_f T = \mathbf{0}$.

- If T is f-holomorphic (i.e., it has a Taylor series expansion with respect to f), then $\nabla_{f^*}T = \mathbf{0}$.
- If T is f^* -holomorphic (i.e., it has a Taylor series expansion with respect to f^*), then $\nabla_f T = \mathbf{0}$.
- $\bullet (\nabla_{f^*} T)^* = \nabla_f T^*.$

Any gradient descent based algorithm minimizing a real valued operator T(f) is based on the update scheme:

$$\mathbf{f}_n = \mathbf{f}_{n-1} - \mu \cdot \nabla_{\mathbf{f}^*} \mathbf{T}(\mathbf{f}_{n-1}).$$

Any gradient descent based algorithm minimizing a real valued operator T(f) is based on the update scheme:

$$\mathbf{f}_n = \mathbf{f}_{n-1} - \mu \cdot \nabla_{\mathbf{f}^*} \mathbf{T}(\mathbf{f}_{n-1}).$$

Remark: We have used f in place of w (used before) to stress the fact that the RKHS \mathbb{H} can be of infinite dimension.

Outline

- Signal Processing with Kernels
 - Preliminaries
 - Kernel LMS
- Wirtinger's Calculus
 - The Complex Case: Wirtinger's Calculus
 - Wirtinger's Calculus in complex RKHS
- Complex Gaussian Kernel LMS
 - Formulation
 - Sparsification
 - Experiments

Mapping to the complex RKHS

• Consider the sequence of examples $(z(1), d(1)), (z(2), d(2)), \dots (z(N), d(N)),$ where $d(n) \in \mathbb{C}$ and $z(n) \in \mathbb{C}^{\nu}$

Mapping to the complex RKHS

- Consider the sequence of examples $(z(1), d(1)), (z(2), d(2)), \dots (z(N), d(N)),$ where $d(n) \in \mathbb{C}$ and $z(n) \in \mathbb{C}^{\nu}$
- Let $\mathbf{z}(n) = \mathbf{x}(n) + i\mathbf{y}(n), \ \mathbf{x}(n), \ \mathbf{y}(n) \in \mathbb{R}^{\nu}.$

Mapping to the complex RKHS

- Consider the sequence of examples $(z(1), d(1)), (z(2), d(2)), \dots (z(N), d(N)),$ where $d(n) \in \mathbb{C}$ and $z(n) \in \mathbb{C}^{\nu}$
- Let $\mathbf{z}(n) = \mathbf{x}(n) + i\mathbf{y}(n), \ \mathbf{x}(n), \ \mathbf{y}(n) \in \mathbb{R}^{\nu}.$
- We map the points $\mathbf{z}(n)$ to the complex RKHS \mathbb{H} an appropriate complex mapping $\mathbf{\Phi}$.

Choice of the complex mapping Φ

Φ can be the result of complexifying real kernels:

$$\Phi(\mathbf{z}(n)) = \Phi(\mathbf{z}(n)) + i\Phi(\mathbf{z}(n))$$

$$= \kappa \left((\mathbf{x}(n), \mathbf{y}(n))^T, \cdot \right) + i \cdot \kappa \left((\mathbf{x}(n), \mathbf{y}(n))^T, \cdot \right),$$

Choice of the complex mapping Φ

Φ can be the result of complexifying real kernels:

$$\begin{aligned} \boldsymbol{\Phi}(\boldsymbol{z}(n)) &= \boldsymbol{\Phi}(\boldsymbol{z}(n)) + i \boldsymbol{\Phi}(\boldsymbol{z}(n)) \\ &= \kappa \left((\boldsymbol{x}(n), \boldsymbol{y}(n))^T, \cdot \right) + i \cdot \kappa \left((\boldsymbol{x}(n), \boldsymbol{y}(n))^T, \cdot \right), \end{aligned}$$

 Φ can be any complex kernel, e.g. the complex Gaussian kernel,

$$\kappa_{\sigma,\mathbb{C}^d}(x,y) = \exp\left(-rac{\sum_{i=1} d(z_i - w_i^*)^2}{\sigma^2}\right)$$

Note that exp is the complex exponential function, i.e.,

$$\exp(z) = \sum_{n=1}^{\infty} \frac{z^n}{n!}$$

• We apply the complex LMS to the transformed data:

$$(\Phi(z(1)), d(1)), (\Phi(z(2)), d(2)), \dots (\Phi(z(N)), d(N)).$$

- We apply the complex LMS to the transformed data: $(\Phi(z(1)), d(1)), (\Phi(z(2)), d(2)), \dots (\Phi(z(N)), d(N)).$
- The objective of CKLMS is to minimize

$$E[|e(n)|^2] = E[|d(n) - \langle \Phi(\mathbf{z}(n), \mathbf{f} \rangle_{\mathbb{H}}^2],$$

at each instance n.

Using the rules of Wirtinger's calculus in \mathbb{H} we obtain the following update rule:

Using the rules of Wirtinger's calculus in \mathbb{H} we obtain the following update rule:

$$\mathbf{f}(n) = \mathbf{f}(n-1) + \mu \mathbf{e}(n)^* \cdot \mathbf{\Phi}(\mathbf{z}(n)),$$

where f(n) denotes the estimate at iteration n.

Assuming that $f(0) = \mathbf{0}$, the repeated application of the weight-update equation gives:

Assuming that $f(0) = \mathbf{0}$, the repeated application of the weight-update equation gives:

$$f(n) = f(n-1) + \mu e(n)^* \Phi(\mathbf{z}(n))$$

$$= f(n-2) + \mu e(n-1)^* \Phi(\mathbf{z}(n-1))$$

$$+ \mu e(n)^* \Phi(\mathbf{z}(n))$$

$$= \sum_{k=1}^{n} e(k)^* \Phi(\mathbf{z}(k)).$$

The filter output at iteration *n* becomes:

The filter output at iteration *n* becomes:

$$\hat{d}(n) = \langle \mathbf{\Phi}(\mathbf{z}(n)), (\mathbf{n} - \mathbf{1}) \rangle_{\mathbb{H}}$$

$$= \mu \sum_{k=1}^{n-1} e(k) \langle \mathbf{\Phi}(\mathbf{z}(n)), \mathbf{\Phi}(\mathbf{z}(k)) \rangle_{\mathbb{H}}$$

$$= \mu \sum_{k=1}^{n-1} e(k) \kappa_{\sigma, \mathbb{C}^d}(\mathbf{z}(n), \mathbf{z}(k))$$

Outline

- Signal Processing with Kernels
 - Preliminaries
 - Kernel LMS
- Wirtinger's Calculus
 - The Complex Case: Wirtinger's Calculus
 - Wirtinger's Calculus in complex RKHS
- Complex Gaussian Kernel LMS
 - Formulation
 - Sparsification
 - Experiments

Sparsification

 CKLMS and other kernel based adaptive filtering algorithms require a growing network of training centers z(0), z(1),..., z(n),....

Sparsification

- CKLMS and other kernel based adaptive filtering algorithms require a growing network of training centers z(0), z(1),..., z(n),....
- Results: Increasing memory and computational requirements.

Sparsification

- CKLMS and other kernel based adaptive filtering algorithms require a growing network of training centers z(0), z(1),..., z(n),....
- Results: Increasing memory and computational requirements.
- A sparse solution is needed.
- Any sparsification algorithm can be employed. Details are given in the paper.

Outline

- Signal Processing with Kernels
 - Preliminaries
 - Kernel LMS
- Wirtinger's Calculus
 - The Complex Case: Wirtinger's Calculus
 - Wirtinger's Calculus in complex RKHS
- Complex Gaussian Kernel LMS
 - Formulation
 - Sparsification
 - Experiments

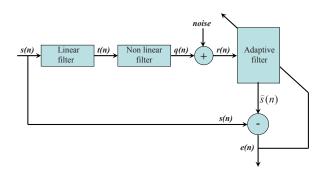


Figure: The equalization problem.

•
$$t(n) = (-0.9 + 0.8i) \cdot s(n) + (0.6 - 0.7i) \cdot s(n-1)$$

•
$$t(n) = (-0.9 + 0.8i) \cdot s(n) + (0.6 - 0.7i) \cdot s(n-1)$$

•
$$q(n) = t(n) + (0.1 + 0.15i) \cdot t^2(n) + (0.06 + 0.05i) \cdot t^3(n)$$

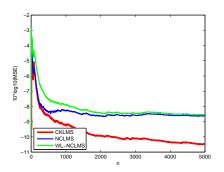
- $t(n) = (-0.9 + 0.8i) \cdot s(n) + (0.6 0.7i) \cdot s(n-1)$
- $q(n) = t(n) + (0.1 + 0.15i) \cdot t^2(n) + (0.06 + 0.05i) \cdot t^3(n)$
- $s(n) = 0.70(\sqrt{1 \rho^2}X(n) + i\rho Y(n))$, where X(n) and Y(n) are gaussian random variables.

- $t(n) = (-0.9 + 0.8i) \cdot s(n) + (0.6 0.7i) \cdot s(n-1)$
- $q(n) = t(n) + (0.1 + 0.15i) \cdot t^2(n) + (0.06 + 0.05i) \cdot t^3(n)$
- $s(n) = 0.70(\sqrt{1 \rho^2}X(n) + i\rho Y(n))$, where X(n) and Y(n) are gaussian random variables.
 - 1 This input is circular for $\rho = \sqrt{2}/2$

- $t(n) = (-0.9 + 0.8i) \cdot s(n) + (0.6 0.7i) \cdot s(n-1)$
- $q(n) = t(n) + (0.1 + 0.15i) \cdot t^2(n) + (0.06 + 0.05i) \cdot t^3(n)$
- $s(n) = 0.70(\sqrt{1 \rho^2}X(n) + i\rho Y(n))$, where X(n) and Y(n) are gaussian random variables.
 - 1 This input is circular for $\rho = \sqrt{2}/2$
 - 2 highly non-circular if ρ approaches 0 or 1.

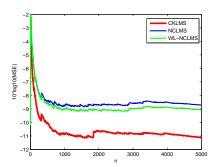
Circular Data

Learning curves for KNCLMS ($\mu=1/2$), NCLMS ($\mu=1/16$) and WL-NCLMS ($\mu=1/16$) (filter length L=5, delay D=2) in the nonlinear channel equalization, for the **circular** input case.



Non Circular Data

Learning curves for KNCLMS ($\mu = 1/2$), NCLMS ($\mu = 1/16$) and WL-NCLMS ($\mu = 1/16$) (filter length L = 5, delay D = 2) in the nonlinear channel equalization, for the **non-circular** input case ($\rho = 0.1$).



Main contributions of this work:

The development of a wide framework that allows the development of complex-valued kernel algorithms.

- The development of a wide framework that allows the development of complex-valued kernel algorithms.
- The extension of Wirtinger's Calculus in complex RKHS as a means for the elegant and efficient computations of gradients that are involved in many adaptive filtering algorithms.

- The development of a wide framework that allows the development of complex-valued kernel algorithms.
- The extension of Wirtinger's Calculus in complex RKHS as a means for the elegant and efficient computations of gradients that are involved in many adaptive filtering algorithms.
- The development of the Complex Gaussian Kernel LMS algorithm as a particular example.

- The development of a wide framework that allows the development of complex-valued kernel algorithms.
- The extension of Wirtinger's Calculus in complex RKHS as a means for the elegant and efficient computations of gradients that are involved in many adaptive filtering algorithms.
- The development of the Complex Gaussian Kernel LMS algorithm as a particular example.
 - Experiments verify that CKLMS gives significantly better results compared to CLMS and WL-CLMS for nonlinear channels.